Working Group 2 (WG2): RF Field Control Schemes, RF System Modeling, RF System Operation

Convener: Stefan Simrock Charge of WG2:

- 1. Compile a list of possible algorithms, procedures and diagnostics for each conceptual design (as identified in Charge 3 of WG1). Start with a list of questions. Examples for questions to be answered:
 - a) What are the different implementations of a SEL?
 - b) Do we need piezo tuners in a high Q_1 cavity, what are the advantages, are they reliable?
 - c) Feedforward (FF): when and where to implement. Issues specific to FF?
- 2. How do we model an rf control system? Subsystem models for amplifiers, cavities, nonlinear effects, mechanical dynamics of the cavity, diagnostics (beam phase, detuning).
 - a) Can we make a modeling menu?
 - b) Can we develop a generic model applicable to the various schemes?
- 3. Implementation (realization) of the model in a digital controller
- 4. If possible compile a checklist which guides the rf system designer to the optimum design

	SEL	GDR	I&Q	A&P	Digital	Analog
Pulsed	M ₁₁	M ₁₂	M ₁₃	M ₁₄	M ₁₅	M ₁₆
cw	M ₂₁	M ₂₂	M ₂₃	M ₂₄	M ₂₅	M ₂₆
Relativistic	M ₃₁	M ₃₂	M ₃₃	M ₃₄	M ₃₅	M ₃₆
Non- relativistic	M ₄₁	M ₄₂	M ₄₃	M ₄₄	M ₄₅	M ₄₆
High Q _L ~10 ⁷	M ₅₁	M ₅₂	M ₅₃	M ₅₄	M ₅₅	M ₅₆
$Low Q_L$ ~ 10^6	M ₆₁	M ₆₂	M ₆₃	M ₆₄	M ₆₅	M ₆₆
High E _{acc}	M ₇₁	M ₇₂	M ₇₃	M ₇₄	M ₇₅	M ₇₆
Low E _{acc}	M ₈₁					
High current	M ₉₁	•••	•••			
Low current	$M_{10,1}$					
Vector sum	$M_{11,1}$					
Single cavity	$M_{12,1}$					

Tuner Control

List of generic statements for different applications

DESIGNS

SEL

- -good if resonance freq changes over many bw (~10) over turn-on
- -start-up may be slow (use generator for startup)
- -possibility of running many cavities at high field for conditioning of cavities and couplers independently
- -possibility of excitation of other passband and HOM modes
- -phase shift of limiters
- -inherently stable with amplitude (to 1st order)[need limiter or klystron otherwise it can go to full power and loose window interlocks]
- -use two probes (one at each end) to suppress next pass band mode [good idea]
- -tracks resonant freq of cavity
- minimum amplitude infinitely small

GDR

- -more susceptible to ponderomotive oscillations in open loop
- -better for pulsed operation if delta-f(t) small
- -better to operate VS (vector sum) control
- -Recovery from trip in CW machin [always lock SEL phase to ref]

I/Q control

- -Coupling if loop phase is wrong
- amp&phase detectors desired in analog systems for monitoring
- -noise of IQ detector more than Schottky diode
- 4 quadrant control including zero
- good for correction of large errors
- -control of resonance fluct. less power to [Bessel function sidebands] large errors
- -better control of large beam loading

A&P Control

- -less noise on amplitude detection
- more tolerant to loop phase error [eventually have to use I/Q modulator inherent limitations [digital I/Q modulators but limited]
- analog modulator & demodulator nonlinear + offset + noise

Digital

- -creates additional delays
- -component availability lifetime 5 yr
- -more sensitive to EMI
- -aging
- -maintainability
- +flexibility
- +feedforward fits naturally
- +built-in diagnostics
- +suited for superslow systems (water temp.)

[analog radiation will drift – digital will work till it dies]

+radiation sensitive(?)

```
Analog
       +minimum delay
       +simplicity +straightforward
       +better diagnostics with analog scopes
       [systems with many inputs and outputs digital better]
       +less resources for R&D
       [for simple control system w/o exception and feedforward, analog way to go]
Hybrid system better?
       +for maximum bandwidth
APPLICATIONS
PULSED
       +SEL if delta-f large (>10bandwidth)
      (-GDR "
       +SEL needs seeding feature
       +digital better – especially for feedforward
       +digital lots of diagnostics
       +digital better fault recovery
       + thermally reduced parameter changes
       - loop phase and gain changes during the pulse [important for designer]
          have no information between pulses
CW
       +more time for turn-on
       +continuously monitor microphonics
       +constant Lorentz force detuning (except turn-on)
       [TELSA has Lorentz force detuning transient even on flattop]
       +systems less prone to drift
       +less need for feedforward, unless beam loading fluctuations
Relativistic
       +vector sum control works well
```

+more tolerant of single point failures

Nonrelativistic

- -vector sum can not perfectly correctly compensate for errors (but still need it)
- -need individual cavity phase adjustment
- -above certain energy can use vector sum (depends on requirements)

High Q

+SEL desired (large detuning)

[general statement- hybrid SEL/GDR digital desired everywhere]

- +active tuner control
- +tolerates more signal processing delay [from elect. view, but from mech. view could be moved a lot] for same DC gain

High Current

Heavy Beam Loading

- $\varnothing low Q \varnothing small detune \varnothing GDR$

Low Current

Low Beam Loading

[energy recovery ?] [TESLA picks Q for Lorentz][ERL may match for other than design beam] [problems with dynamic range – hard to do both – nonlinearities – digital?]

Vector Sum

- +digital calibration
- +SEL works for vector sum? Turns on like other systems provides same signal to all cavities, operationally same? How do I diagnose the others?

Single Cavity

- +easier
- -expensive
- -more hardware to maintain
- +microphonics are easier to deal with
- +more fault tolerant

- RF Modeling

-beam cavity interaction

[DESY/JLAB uses Matlab +Simulink]

[very useful – graphical interface made very easy to plug in – easier than writing down differential equations]

- DT interactive req. MacOS written in C++, hooks into OS
- Are Matlab + SIMULINK modules available? Not available on a webpage; (very very slow?)]
- What do simulate
 - Linac with many cavities
 - Control of individual cavity

Matlab:

- too slow for whole accel.;
- + good to maintain library SS will post on web

- Commissioning and operational procedures

- How does one adjust initial loop phase?]
- Tune cavities
- Gradient and Phase calibration
 - -phase calibration always with beam
 - -easier with relativistic beam
 - -for protons especially problem with proton changing velocity profile
- Automated Fault Recovery
 - Presently mostly manual
- Adjustment of Loaded Q's

Control Range

IQ

AP

AQ

WG 2 tasks

Commissioning and operational procedures

- · Cavity and coupler conditioning
- · Check functionality of interlocks
- · Loop phase
- · Loop gain calibration
- · Gradient and phase calibration (or Vector-sum)
- Measurement of beam phase
- Frequency Tuner Control (slow and fast)
- · Adjust loaded Q's
- · Adjustment of incident waves for vector-sum
- · Determine all other relevant rf system parameters
- · Evaluate and optimize performance with beam\
- · Evaluate performance limitations
- · Adaptive Feedforward
- · Automated fault recovery
- Waveguide tuner control
- · Energy vernier (beam based)

Diagnostic Tools

- Loop phase
- · Beam phase
- Beam transient based gradient and phase calibration
- Cavity detuning
- Microphonics
- System identification (all relevant parameters)

Design Choices Made

	Type	Cavi	ties/k	Pulsed/CW	Ana/Dig
Darmstadt \	SEL	API	1	CM	A
RIA/ATLAS	SEL	ILD	1	CM	A
SNS	GOR	IIQI	١	PULSED	DIGITAL
CEBAF	GDR	Ala)	CW	A
TESLA	GDR	I/a	36	PULSED	DIGITAL
CEBAF 12GeV	SEL	IA	ı	CW	DIGMAL?
ERL	SEL	IQ	13	cw	DIGITAL
SPL	GDR	I/Q	1-4	PULSED	DIGITAL
Storage Ring	GOR	1/0)	CW	A-> DIGITAL